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Application of a Time-Dependent Constitutive Model to 
Rheocast Systems 

O.& Ilegbusi 

A mathematical model has been developed to describe the velocity field in an agitated AI-5Cu alloy in 
which B4C particles were suspended at different loading rates of up to 40 %. The material system was agi- 
tated by means of an electromagnetic rotary stirrer. The non-Newtonian behavior of the melt/solid slurry 
was allowed for using two models: the steady-state model of Joly and Flemings and the model of  Brown, 
which takes account of time-dependent behavior. Calculations have shown that the two models behave 
similarly at high shear rates. In addition, if agitation was discontinued, very little t ime was required for  
the velocity (and hence the fluidity) of the slurry to decay. 
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1. Introduction 

SINCE its invention by Flemings and Mehrabian (Ref 1) some 
22 years ago, rheocasting has become a potentially attractive 
means of producing parts from segregation-prone alloys and of 
controlling microstructure in general. Any discussion of the 
production of rheocast materials must observe the basic princi- 
ple that the melt/solid slurries to be handled are shear thinning, 
which means they become fluid when subjected to sufficiently 
high levels of shear. In the pioneering work of characterizing 
the rheological properties of these systems, Fleming's cowork- 
ers (Ref 2, 3) were able to develop constitutive relationships 
that enabled us to quantify the types of shear rates that are nec- 
essary to achieve conditions appropriate for rheocasting sys- 
tems. 

Optimal design of rheocasting equipment requires model- 
ing the whole process, including heat transfer, fluid flow, and 
solidification. Furthermore, for practical reasons, in many ap- 
plications it is helpful to provide the necessary agitation 
through the use of electromagnetic forces, which requires in- 
corporating the concepts of magnetohydrodynamic (MHD) 
phenomena. 

The initial work carried out in this field (Ref 4-6) has con- 
centrated on predicting the velocity fields in melt/solid slurries, 
agitated by either mechanical or electromagnetic means. In the 
latter case, both rotary stirring and agitation provided by an ax- 
ial field were considered. The work was subsequently extended 
to incorporate the elements of heat transfer and solidification 
(Ref 7). 

This research was helpful, in that it provided the quantita- 
tive underpinning of the basic theory that system flowability 
depended on both the solid fraction and the shear rate and that 
maintaining high shear rates was necessary in order to have a 
relatively fluid system, especially at high solid fraction rates. 
These earlier studies developed a methodology of addressing 
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problems of this type that can be readily extended to repre- 
senting real casting applications. 

A critical point in all these modeling efforts is that actual 
predictions will have to depend on the appropriateness of the 
constitutive models employed for representing the relationship 
between shear and strain, especially since these relationships, 
far from being universal, are dependent on the particular sys- 
tem employed. Until recently, data on these systems have been 
scarce; furthermore, the description of the rheology failed to 
address the issues ofinhomogeneity and time dependence. As a 
practical matter, both of these phenomena could significantly 
affect the performance of real rheocasting units. Inhomo- 
geneity and segregation of the solid phase may adversely affect 
system performance. An understanding of transient behavior 
is, of course, crucial to addressing casting applications where 
the melt is not actually being stirred upon entering the mold. In 
simple terms, it would be essential to know how long the melt 
would retain its fluidity once agitation has been discontinued or 
once it leaves the region where external agitation is being im- 
posed on the system. 

The purpose of this work is to review our earlier efforts in 
modeling electromagnetically stirred rheocasting systems and 
then to extend these calculations by allowing for the time de- 
pendence of these systems through the incorporation of consti- 
tutive relationships recently developed by Brown (Ref 8). 
Section 2 presents a formulation of the problem and describes 
the numerical method employed for the solution of the differ- 
ential equations. The computed results are presented in Section 
3 and discussed in Section 4. 
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2. Formulation 

Consider a cylindrical vessel (Fig. l) that contains an in- 
itially molten alloy in which inert solid particles are suspended. 
The material chosen for the calculations was an A1-5Cu alloy in 
which boron carbide particles were suspended. 

This melt is being agitated by a rotating electromagnetic 
field of  the type described in Ref6. There are two main assump- 
tions: 

The system is axisymmetric. 

Flow in the melt can be described by the two-dimensional 
Navier-Stoke's equations, with an appropriate shear-thin- 
ning model to represent the effective viscosity of  the melt. 
Thus, the melt viscosity will depend on the solid fraction 
and on the shear rate. Since the shear rate is both direction 
and position dependent, this relationship will be quite com- 
plex. 

Within the framework of  these assumptions, the governing 
equations may be put in the form: 
Mass conservation: 

3w 1 Orv 
- -  + - - -  = 0 ( E q  1 )  
3z r Or 

Axial  momentum: 

3pw ~p 
- - +  V �9 (pUw) . . . .  (V �9 x)z + F z (Eq 2) 

~ t  / )z  

Radial  momentum: 

apv ap 
~- V.  (pUv) . . . .  (V  �9 x)r + F r (Eq 3) 

Ot Or 

Azimuthal  momentum: 

bpu + V �9 (pUu) = - ( V  - x)0 + F 0 
3t 

(Eq 4) 

Equations 2 to 4 represent a balance between transient and con- 
vective fluxes on the left and pressure gradients, diffusion, and 
source (body force) terms on the right. In these equations, p is 
static pressure; U is the generalized velocity vector; "c is the 
shear stress tensor; F = (F  r F a, Fz) is the electromagnetic body 
force; i", 0, and z represent the radial, azimuthal, and axial coor- 
dinate directions, respectively; and the subscripts refer to com- 
ponents in the corresponding coordinate directions. These and 
other symbols are defined in the section on nomenclature. The 
actual expressions for the body forces and the shear stress will 
be presented next. 

2.1 S h e a r  Stress  Tensor  

In general, the stress components can be expressed in terms 
of the slurry viscosity and the shear rates in tensorial notation as 
(Ref 4, 5): 

(Eq 5) 

where subscripts i andj  refer to the coordinate directions, and 
U and X represent generalized velocity and spatial coordinates, 
respectively. 

Two models are employed to express the slurry viscosity, ~t, 
in Eq 5. The first model assumes that the semislurry system 
obeys a power-law relationship: 

I1 = -[ml0.5(A:A) 1/21n-1] (Eq 6) 

where A is the rate of deformation tensor, (A:A) represents the 
dyadic product of  A, and m and n are empirical constants de- 
fined by the expressions: 

m = exp (9.783fs + 1.4345) (Eq 7) 

I0.1055 +0.41fs fs < 0.30 (Eq8)  
n = [-0.308 + 1.78fs 0.30 <fs 

wheref  s is the solid fraction. 
It should be pointed out that these relationships are deriva- 

tives of  those deduced for a lead-tin system by Joly (Ref 2). It is 
not immediately obvious whether the relationships will hold 
for the aluminum-copper system considered in the present 
study. However, it is felt that the general nature of  these sys- 
tems, particularly the shear-thinning behavior, would be fairly 
well represented by them. 

The second alternative constitutive relationship employed 
is based on the model of Brown (Ref 8), in which the slurry vis- 
cosity is obtained from the relationship: 

I (C/Cmax)l/3 ] 
I x - A  + D fs y(1-n)/ns 
IXl 1 - (C/Cmax) 1/3 

(Eq 9) 

where T = (A:A)I/2; A, Cmax, and D are empirical constants; and 
Ixl is the pure alloy molecular viscosity. The first term on the 
right is used to express the contribution of relative particle mo- 
tion to the slurry viscosity and is based on the relationships es- 
tablished by Frankel and Acrivos (Ref 9) for concentrated 
suspensions of  solid spheres. Based on their work, values of  A 
= 9/8 and Cma x = 0.625 were established. C, the effective solid 
volume fraction, is calculated from: 

C =fs( l  + 0.25S) (Eq 10) 

The second term on the right o fEq  9 was derived by Brown 
to represent the contribution of  the disruption of  pair bonds (or 
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degree of agglomeration) in the slurry. This second term is thus 
used to introduce the time-dependent effect. The degree of  ag- 
glomeration, S, is calculated from: 

dS 
- K(1 - S) - GS2y (Eq 11) 

dt 

where the first term is called a static hardening function and the 
second is called a dynamic softening function. K and G (like n 
in Eq 9) are material constants that, strictly, are dependent on 
many parameters, including temperature, particle size, solid 
fraction, shear rate, and fluid properties. The values employed 
for the constants here are n = 5, K = 0.1, D = 2.5 x 104, and G 
= 0.01. These values have been chosen to give steady-state val- 
ues of  viscosity that are close to the Joly-Fleming model. 

2.2 Electromagnetic Force 

The electromagnetic force components (F  r F 0, and Fz) in 
Eq 2 to 4 are evaluated through the Maxwell relations. In the 
present system, it is assumed that the applied rotating magnetic 
field is sinusoidal in time and angular coordinates. The force 
components for a single-pole magnet employed here are ap- 
proximately (Ref 6): 

F z = 0 (Eq 12) 

Fr = ~ B 2 - olLt0r3 (Eq 13) 

1( w) 
= o r  (Eq 14) F0 7 B2 - r  

where co is the angular velocity of  the field, B is its magnitude, 
is electrical conductivity, and I.t 0 is magnetic permeability. 

2.3 Boundary Conditions and Solution of Equations 

The boundary conditions employed in the computations are 
no slip at the walls, symmetry at the centerline, and zero stress 
at the free surface. The governing equations were cast in finite- 
domain forms and solved with the PHOENICS code (Ref 10). 
A spatially nonuniform 28 by 18 by 36 grid structure was used 
in the radial, azimuthal, and axial directions, respectively. A 
fully implicit  scheme that is unconditionally stable was em- 
ployed. The results were found to be grid independent in both 
the spatial and temporal coordinates. 

3. Results 

Figures 2 and 3 show the velocity vectors at the midheight 
plane (z/H = 0.5). Figure 2 depicts the behavior of  the system 
with a field strength of  0.125 T (tesla) with no solid suspen- 
sion, and Fig. 3 shows the behavior of  a similar system with a 
solid fraction of  0.4. The system of Fig. 2 was turbulent and 
Newtonian, and the results were obtained using a turbulence 
model. It is seen that whereas the maximum velocity is very 
close to the wall (where the maximum field is located) for the 
Newtonian flow (Fig. 2), it is located at some distance away for 
the non-Newtonian case (Fig. 3). The latter behavior is due to 
the nature of  the constitutive relationship. The local shear rate 
will be at its maximum at some position near the solid surface, 
which in turn will cause a local minimum in the apparent vis- 
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Fig. 2 Velocity vectors at z/H = 0.5 forf  s = 0 and B = 0.125 T 
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Fig. 3 Velocity vectors at z/H = 0.5 forf  s = 0.4 and B = 0.125 T 

Journal of Materials Engineering and Performance Volume 5(1) February 1996----119 



cosity. The net result is a sharper local maximum in the melt ve- 
locity than would be expected for turbulent flow conditions. 

Figures 4(a) and (b) show maps of solid fraction at different 
times, in both the absence and presence of stirring, for a system 
with heat removal at the bottom and heat loss by radiation at the 
surface. In the absence of  agitation, the solid fraction contours 
are essentially flat, whereas in the presence of  agitation, the 
contours have radial variation. A more detailed description of  
the solidification model and calculations is given in Ref 6. 

Figure 5 shows the evolution of the maximum velocity for a 
particular case of a solid fraction of 0.3 and a field strength of 
0.05 T. The time dependence of the system is readily seen; 
quasi-steady'state conditions are attained after about 7 s. Fig- 
ure 6 shows the decay of  the characteristic velocity, once the 
stirring has been discontinued, for the same case. The velocity 
decays rapidly over a relatively short time. The decay time, of  
course, will depend on the level of  prior agitation. 

Figure 7 compares the ratio of  maximum value of  apparent 
viscosity to atomic viscosity of  the melt computed on the basis 

of the Brown model (model 1) and the previtusly published 
Joly and Flemings model (model 2). It is interesting to note that 
while the two models differ at the lower shear rates (corre- 
sponding to the lower applied field levels), both models tend to 
converge to quite low values for high levels of  agitation. Figure 
8 depicts a similar situation, but in terms of the characteristic 
melt velocity. The two plots are again seen to be quite similar. 
This indicates that the early model of  Joly and Flemings pro- 
vides a good general representation of  the fact that at high shear 
rates the melt will become quite fluid. 

An important aspect of  the new modeling approach is that it 
provides the means for estimating the rate and state of agglom- 
eration within the system. Thus, some of  the key issues of inho- 
mogeneity can be addressed. The computed results provide 
information on the state of agglomeration, which, as seen in 
Fig. 9 to 12, can be presented either in plots of  the field values 
of S or the maximum values of S as a function of the solid frac- 
tion and the applied magnetic field. While the state of  agglom- 
eration will vary significantly during the initial stages, it will 
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become quite uniform after the passage of  a certain time period, 
which was about 8 s in the present case. 

4.  D i s c u s s i o n  

A mathematical representation has been developed to de- 
scribe the velocity fields in an electromagnetically stirred 
melt/solid slurry consisting of  AI-5Cu + B4C. The formulation 
was based on the Navier-Stokes equations, written for a non- 
Newtonian fluid exhibiting shear-thinning behavior that can be 
represented by a power-law-type relationship. Under these 
conditions, the apparent viscosity will depend both on the shear 
and on the solid fraction in the melt. 

An important feature of  this work was to incorporate the 
time dependence of this relationship. In a physical sense, this 
time dependence is brought about by the agglomeration of  the 
solid particles. Thus, a finite time must elapse before the sys- 
tem can adjust to a change in the externally imposed condi- 
tions, such as the stirring rate. The allowance for time 
dependence is, of  course, a very important practical problem, 
because time-dependent situations will arise in mold filling and 
also in the continuous casting of  melt/solid slurry systems. 

In presenting the computed results, it was possible to com- 
pare the predictions based on the Brown model with an earlier 
model of  Joly and Flemings; the latter addressed only the 
steady-state behav'ior of the system. With regard to steady-state 
behavior, the two models were reasonably close at high shear 
rates and exhibited a behavior where the system became quite 
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fluid once a high enough shear rate was being imposed. Unfor- 
tunately, no corresponding experimental data were available 
for comparison with the predictions for the specific material 
system considered. However, the mathematical model has been 
thoroughly compared with analytical and experimental data for 
other related systems (Ref 4-6). It should also be emphasized 
that the model of  Joly and Flemings with which the present con- 
stitutive behavior is compared is based on experimental obser- 
vation. 

An important feature of the model was its ability to predict 
the transient response of the system to changes in stirring con- 
ditions. It was found that for the range of conditions chosen, 
this response time was on the order of  a few seconds, the specif- 
ics depending on the solid fraction and on the stirring rate. The 
important implication of  these findings is that rheocast mated-  

als can be used to fill molds, but the initial stage of agitation 
must be quite high and the time span for the actual mold filling 
application is quite limited. 
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Nomenclature 

A scaling factor based on assumed spatial parti- 
cle arrangement 

B magnetic field 
C, Cma x effective and maximum volume fraction 

solid, respectively 
D empirical constant 
fs solid fraction 
F electromagnetic force 
G dynamic softening constant 
H height of melt in container 
K proportionality constant 
m, n empirical constants in shear-stress relation- 

ship 
p pressure 
r radial coordinate 
S degree of agglomeration 
u velocity component along azimuthal direc- 

tion 
U generalized velocity vector 
v velocity component along radial direction 
w velocity component along axial direction 
z axial coordinate 
A rate of  deformation tensor 
Ix viscosity of slurry 
~t I viscosity of melt 
la 0 magnetic permeability 
o) angular velocity of  magnetic field 
p density 

electrical conductivity 
x shear stress tensor 
0 azimuthal coordinate 
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